16 research outputs found

    Is a robot an appliance, teammate, or friend? age-related differences in expectations of and attitudes toward personal home-based robots

    Get PDF
    Future advances in technology may allow home-based robots to perform complex collaborative activities with individuals of different ages. Two studies were conducted to understand the expectations of and attitudes toward home-based robots by younger and older adults. One study involved questionnaires sent to 2500 younger adults (aged 18-28) and 2500 older adults (aged 65-86) in the Atlanta Metropolitan area. One hundred and eighty questionnaires were completed and returned by individuals in the targeted age groups. For the questionnaire, participants were asked to imagine a robot in their home and then to answer questions about how well characteristics matched their imagined robot. Participants' technology and robot experience, demographic information, and health information were also collected. In conjunction with the questionnaire study, twelve younger adults (aged 19-26) and twenty-four older adults in two sub-age groups (younger-older, aged 65-75, and older-older aged 77-85) were interviewed about their expectations of and attitudes toward a robot in their home. They were asked to imagine a robot in their home and answer numerous questions about the tasks their envisioned robot would perform, the appearance of the robot, and other general questions about their interaction with the robot. The results of the studies suggest that individuals have many different ideas about what a robot in the home would be like. Mostly, they want a robot to perform mundane or repetitive tasks, such as cleaning, and picture a robot as a time-saving device. However, individuals are willing to have a robot perform other types of tasks, if they see benefits of having the robot perform those tasks. The ability of the robot to perform tasks efficiently, with minimal effort on the part of the human, appears to be more important in determining acceptance of the robot than its social ability or appearance. Overall, individuals both younger and older seem to be very open to the idea of a robot in their home as long it is useful and not too difficult to use.Ph.D.Committee Chair: Fisk, Arthur D.; Committee Member: Corso, Gregory; Committee Member: Essa, Irfan A.; Committee Member: Roberts, James S.; Committee Member: Rogers, Wendy A.; Committee Member: Van Ittersum, Koert

    Human-Robot Interaction Directed Research Project

    Get PDF
    Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed studies, participants performance during teleoperation of a robot arm will be compared when they are provided with command-guidance symbology (that is, directing the operator what commands to make) or situation-guidance symbology (that is, providing natural cues so that the operator can infer what commands to make). The second factor for AR symbology is the effects of overlays that are either superimposed or integrated into the external view of the world. A study is proposed in which the effects of superimposed and integrated overlays on operator task performance during teleoperated driving tasks are compare

    Evidence Report: Risk of Inadequate Human-Computer Interaction

    Get PDF
    Human-computer interaction (HCI) encompasses all the methods by which humans and computer-based systems communicate, share information, and accomplish tasks. When HCI is poorly designed, crews have difficulty entering, navigating, accessing, and understanding information. HCI has rarely been studied in an operational spaceflight context, and detailed performance data that would support evaluation of HCI have not been collected; thus, we draw much of our evidence from post-spaceflight crew comments, and from other safety-critical domains like ground-based power plants, and aviation. Additionally, there is a concern that any potential or real issues to date may have been masked by the fact that crews have near constant access to ground controllers, who monitor for errors, correct mistakes, and provide additional information needed to complete tasks. We do not know what types of HCI issues might arise without this "safety net". Exploration missions will test this concern, as crews may be operating autonomously due to communication delays and blackouts. Crew survival will be heavily dependent on available electronic information for just-in-time training, procedure execution, and vehicle or system maintenance; hence, the criticality of the Risk of Inadequate HCI. Future work must focus on identifying the most important contributing risk factors, evaluating their contribution to the overall risk, and developing appropriate mitigations. The Risk of Inadequate HCI includes eight core contributing factors based on the Human Factors Analysis and Classification System (HFACS): (1) Requirements, policies, and design processes, (2) Information resources and support, (3) Allocation of attention, (4) Cognitive overload, (5) Environmentally induced perceptual changes, (6) Misperception and misinterpretation of displayed information, (7) Spatial disorientation, and (8) Displays and controls

    Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    Get PDF
    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed

    Human-Robot Interaction

    Get PDF
    Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is a new Human Research Program (HRP) risk. HRI is a research area that seeks to understand the complex relationship among variables that affect the way humans and robots work together to accomplish goals. The DRP addresses three major HRI study areas that will provide appropriate information for navigation guidance to a teleoperator of a robot system, and contribute to the closure of currently identified HRP gaps: (1) Overlays -- Use of overlays for teleoperation to augment the information available on the video feed (2) Camera views -- Type and arrangement of camera views for better task performance and awareness of surroundings (3) Command modalities -- Development of gesture and voice command vocabularie

    Human Engineering of Space Vehicle Displays and Controls

    Get PDF
    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies

    Toward an understanding of optimal performance within a human-automation collaborative system: Effects of error and verification costs

    No full text
    Automated products, especially automated decision aids, have the potential to improve the lives of older adults by supporting their daily needs. Although automation seems promising in this arena, there is evidence that humans, in general, tend to have difficulty optimizing their behavior with a decision aid, and older adults even more so. In a human-automation collaborative system, the ability to balance costs involved in relying on the automation and those involved in verifying the automation is essential for optimal performance and error minimization. Thus, this study was conducted to better understand the processes associated with balancing these costs and also to examine age differences in these processes. Cost of reliance on automation was evaluated using an object counting task. Participants were required to indicate the number of circles on a display, with support coming from a computer estimate decision aid. They were instructed to rely on the aid if they believed its answer or verify the aid by manually counting the circles on the screen if they did not believe the aid to be correct. Manipulations in this task were the cost of a wrong answer, either -5, -10, -25, or -50 points and the cost of verification, either high or low. It was expected that participants would develop a general pattern of appropriate reliance across the cost conditions, but would not change their reliance behavior enough to reach optimality. Older adults were expected to rely on the decision aid to a lesser extent than younger adults in all conditions, yet rate the automation as being more reliable. It was found that older and younger adults did not show large differences in reliance, although older adults tend to be more resistant to changing their reliance due to costs than younger adults. Both age groups significantly underutilized the computer estimate, yet overestimated its reliability. The results are important because it may be necessary to design automated devices and training programs differently for older adults than for younger adults, to direct them towards an optimal strategy of reliance.M.S.Committee Chair: Arthur D. Fisk; Committee Member: Gregory M. Corso; Committee Member: Wendy A. Roger

    More than a Servant: Self-Reported Willingness of Younger and Older Adults to having a Robot perform Interactive and Critical Tasks in the Home

    Full text link
    Many companies are developing robots for the home, including robots specifically for older adults. There is little understanding, however, about the types and characteristics of tasks that younger and older individuals would be willing to let a robot perform. In a mailed questionnaire, participants were asked to indicate their willingness to have a robot perform each of 15 robot tasks that required different levels of interaction with the human owner and different levels of task criticality. The responses of 117 older adults (aged 65-86) and 60 younger adults (aged 18-25) were analyzed. The results indicated that respondents of both groups were more willing to have robots perform infrequent, albeit important, tasks that required little interaction with the human compared to service-type tasks with more required interaction; they were least willing to have a robot perform non-critical tasks requiring extensive interaction between robot and human. Older adults reported more willingness than younger adults in having a robot perform critical tasks in their home. The results suggest that both younger and older individuals are more interested in the benefits that a robot can provide than in their interactive abilities
    corecore